H24F-04:
Estimating the relative contributions of human withdrawals
and climate variability to changes in groundwater
Tuesday, 16 December 2014: 4:45 PM
Sean C Swenson and David M Lawrence, National Center for Atmospheric Research, Boulder, CO, United States
Abstract:
Estimating the relative contributions of human withdrawals and climate variability to changes in groundwater is a challenging task at present. One method that has been used recently is a model-data synthesis combining GRACE total water storage estimates with simulated water storage estimates from land surface models. In this method, water storage changes due to natural climate variations simulated by a model are removed from total water storage changes observed by GRACE; the residual is then interpreted as anthropogenic groundwater change. If the modeled water storage estimate contains systematic errors, these errors will also be present in the residual groundwater estimate. For example, simulations performed with the Community Land Model (CLM; the land component of the Community Earth System Model) generally show a weak (as much as 50% smaller) seasonal cycle of water storage in semi-arid regions when compared to GRACE satellite water storage estimates. This bias propagates into GRACE-CLM anthropogenic groundwater change estimates, which then exhibit unphysical seasonal variability. The CLM bias can be traced to the parameterization of soil evaporative resistance. Incorporating a new soil resistance parameterization in CLM greatly reduces the seasonal bias with respect to GRACE. In this study, we compare the improved CLM water storage estimates to GRACE and discuss the implications for estimates of anthropogenic groundwater withdrawal, showing examples for the Middle East and Southwestern United States.