Cross-Frequency Coupling of Plasma Waves in the Magnetosphere

Monday, 15 December 2014: 5:21 PM
George V Khazanov, NASA/GSFC, Greenbelt, MD, United States
Wave-particle and wave-wave interactions are crucial elements of magnetosphere and ionosphere plasma dynamics. Such interactions provide a channel of energy redistribution between different plasma populations, and lead to connections between physical processes developing on different spatial and temporal scales. The lower hybrid waves (LHWs) are particularly interesting for plasma dynamics, because they couple well with both electrons and ions. The excitation of LHWs is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven and/or EMIC waves, in particular those associated with lower frequency (LF) turbulence, may generate LHWs in the auroral zone and ring current region and in some cases this serves as the Alfven and/or EMIC waves saturation mechanism. We believe that this described scenario, as well as some other cross-frequency coupling of plasma waves processes that will be discussed in this presentation, can play a vital role in various parts of the magnetospheric plasma, especially in the places under investigation by the NASA THEMIS and Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)) missions.