T33E-05:
Geodetic Constraints on Fault Slip Rates and Seismic Hazard in the Greater Las Vegas Area

Wednesday, 17 December 2014: 2:40 PM
William C Hammond1, Corné Kreemer2, Geoffrey Blewitt2, James Broermann3 and Richard A Bennett3, (1)University of Nevada Reno, Nevada Geodetic Laboratory, Nevada Bureau of Mines and Geology, and Nevada Seismological Laboratory, Reno, NV, United States, (2)University of Nevada Reno, Nevada Bureau of Mines and Geology, Reno, NV, United States, (3)University of Arizona, Department of Geosciences, Tucson, AZ, United States
Abstract:
We address fundamental questions about how contemporary tectonic deformation of the crust in the southern Great Basin occurs in the region around Las Vegas (LV) Nevada, western Arizona and eastern California. This area lies in the intersection of the eastern Walker Lane Belt, southern Great Basin and western Colorado Plateau (CP), sharing features of transtensional and extensional deformation associated with Pacific/North America relative motion. We use GPS data collected from 48 stations of the MAGNET semi-continuous network and 77 stations from continuous networks including BARGEN and EarthScope Plate Boundary Observatory. MAGNET stations have been observed for a minimum of 7 years, while most continuous stations have longer records. From these data we estimate the velocity of crustal motion for all stations with respect to the stable North America reference frame NA12. To correct for transients from recent large earthquakes including the 1999 Hector Mine and 2010 El Mayor-Cucapah events we use models of co- and post-seismic deformation, subtracting the predicted motions from the time series before estimating interseismic stain rates.

We find approximately 2 mm/yr of relative motion distributed over 200 km centered on Las Vegas, with a mean strain accumulation rate of 10 × 10-9 yr-1, with lower rates of predominantly extensional strain to the east and higher rates of predominantly shear deformation to the west. The mean strain rate is lower than that of the western Walker Lane but about twice that of eastern Nevada where e.g., the Wells, NV MW 6.0 earthquake occurred in 2008. From this new velocity field we generated a horizontal tensor strain rate map and a crustal block motion model to portray the transition of active strain from the CP into the Walker Lane. For faults in the Las Vegas Valley, including the Eglington Fault and Frenchman Mountain Fault, the observed velocity gradients and model results are consistent with normal slip rates of 0.2 mm/yr, which are typical for the region. The Stateline Fault system experiences dextral slip of at least 0.4 mm/yr while normal faults south of LV collectively accommodate 0.9 mm/yr of east-west extension across a zone ~150 km wide. We see no evidence for concentrations of deformation or isolated rigid microplates within this zone.