P43C-4003:
A Study Regarding the Possibility of True Polar Wander on the Asteroid Vesta

Thursday, 18 December 2014
Mohammadali Karimi and Andrew J Dombard, University of Illinois at Chicago, Earth and Environmental Sciences, Chicago, IL, United States
Abstract:
The asteroid 4 Vesta, with an average diameter of ~525 km, is the second most massive asteroid in the solar system. Most of our knowledge about this differentiated asteroid comes from the Howardite-Eucrite-Diogenite class of meteorites that originated from Vesta, images provided by Hubble Space Telescope, and data from the Dawn spacecraft that orbited Vesta from July 2011 to September 2012. Notably, these close-range data confirmed what Hubble images suggested: a highly oblate shape in which the equatorial radius is ~60 km greater than the polar radius, a shape consistent with Vesta’s short rotational period of ~5.3 hr. These images also revealed the presence of two large impact craters near the asteroid’s south pole. Rheasilvia, the younger and larger crater at ~500 km in diameter, is superimposed over Veneneia, ~400 km in diameter. The occurrence of two large impacts near a pole, which possesses a relatively small area (less than 30% of the surface), is highly improbable. Thus, we investigate the possibility of True Polar Wander. We hypothesize that the integrated mass deficit of these two basins applied a torque to the lithosphere to reorient the surface relative to the spin axis and thereby placing these basins near the pole. In order for this phenomenon to occur, however, the lithosphere needs to be pliable enough to allow relaxation of the ancient rotational bulge and concurrent development of the current bulge. We have previously explored whether the lithosphere of Vesta could support the large-scale (~20 vertical km) topography of the basins (short answer: it can). Here, we explore whether this lithosphere could also permit True Polar Wander. We use the Finite Element Method and a viscoelastic rheology to simulate the relaxation of an oblate Vesta under a range of plausible thermal scenarios consistent with Vesta’s expected budget of long-lived radiogenic nuclides. Our results indicate that under reasonable thermal conditions, the relaxation of the rotational bulge of Vesta and subsequent True Polar Wander cannot happen. As unlikely as it may be, it seems that both large impacts occurred in the south polar region of Vesta.