B54G-04:
REGIONAL MAPPING OF COUPLED FLUXES OF CARBON AND WATER USING MULTI-SENSOR FUSION TECHNIQUES
Friday, 19 December 2014: 4:45 PM
Mitchell A Schull1, Martha C. Anderson2, Kathryn A Semmens1, Yun Yang1, Feng Gao1, Christopher Hain3 and Rasmus Houborg4, (1)USDA ARS, Beltsville, MD, United States, (2)USDA ARS, Pendleton, OR, United States, (3)Earth System Science Interdisciplinary Center, COLLEGE PARK, MD, United States, (4)King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Abstract:
In an ever-changing climate there is an increasing need to measure the fluxes of water, energy and carbon for decision makers to implement policies that will help mitigate the effects of climate change. In an effort to improve drought monitoring, water resource management and agriculture assessment capabilities, a multi-scale and multi-sensor framework for routine mapping of land-surface fluxes of water and energy at field to regional scales has been established. The framework uses the ALEXI (Atmosphere Land Exchange Inverse)/DisALEXI (Disaggregated ALEXI) suite of land-surface models forced by remotely sensed data from Landsat, MODIS (MODerate resolution Imaging Spectroradiometer), and GOES (Geostationary Operational Environmental Satellite). Land-surface temperature (LST) can be an effective substitute for in-situ surface moisture observations and a valuable metric for constraining land-surface fluxes at sub-field scales. The adopted multi-scale thermal-based land surface modeling framework facilitates regional to local downscaling of water and energy fluxes by using a combination of shortwave reflective and thermal infrared (TIR) imagery from GOES (4-10 km; hourly), MODIS (1 km; daily), and Landsat (30-100 m; bi-weekly). In this research the ALEXI/DisALEXI modeling suite is modified to incorporate carbon fluxes using a stomatal resistance module, which replaces the Priestley-Taylor latent heat approximation. In the module, canopy level nominal light-use-efficiency (βn) is the parameter that modulates the flux of water and carbon in and out of the canopy. Leaf chlorophyll (Chl) is a key parameter for quantifying variability in photosynthetic efficiency to facilitate the spatial distribution of coupled carbon and water retrievals. Spatial distribution of Chl are retrieved from Landsat (30 m) using a surface reflectance dataset as input to the REGularized canopy reFLECtance (REGFLEC) tool. The modified ALEXI/DisALEXI suite is applied to regions of rain fed and irrigated soybean and maize agricultural landscapes within the continental U.S. and flux estimates are compared with flux tower observations.