GC13F-0719:
Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

Monday, 15 December 2014
Valentine G Anantharaj1, George Mozdzynski2, Mats Hamrud2, Willem Deconinck2, Lorna Smith3 and James Hack4, (1)Oak Ridge National Laboratory, National Center for Computational Sciences, Oak Ridge, TN, United States, (2)European Center for Medium-Range Weather Forecasts, Reading, United Kingdom, (3)University of Edinburgh, Edinburgh, United Kingdom, (4)Oak Ridge National Laboratory, Oak Ridge, TN, United States
Abstract:
The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences.

Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts.

Recent accomplishments in earth sciences at OLCF include the world’s first continuous simulation of 21,000 years of earth’s climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and to reduce the total volume of data communicated. Use of Titan has enabled ECMWF to plan future scalability developments and resource requirements.

We will also discuss the best practices developed over the years in navigating logistical, legal and regulatory hurdles involved in supporting the facility’s diverse user community.