ED31F-3462:
Characteristics of Coronal Mass Ejections

Wednesday, 17 December 2014
Ariane Katrina Marchese, Townsend Harris High School, Flushing, NY, United States, Famim Talukder, University of Michigan Ann Arbor, Ann Arbor, MI, United States and Taran Tulsee, Medgar Evers College, Brooklyn, NY, United States
Abstract:
A coronal mass ejection (CME) is a release of charged particles resulting from solar activity. These charged particles can affect electronics on spacecraft, airplanes, global positioning systems, and communication satellites. The purpose of this research was to study CME data from satellites and correlate these to other properties.

Solar wind data collected by STEREO A/B and ACE satellites were analyzed. The data consisted of solar wind flux for various elements (helium through iron), as well as the components of the interplanetary magnetic field. CME events are known to cause a surge in the helium flux, as well as other particles. It is hypothesized that a CME event will cause an increase in the number of lighter elements relative to heavier particles. This is because for a given input of energy, lighter elements are expected to be accelerated to a greater extent than heavier elements.

A significant increase was observed in the ratio between helium to oxygen (He/O) prior to intense CMEs. A CME event on November 4, 2003 caused an eleven-fold increase in the He/O ratio, while for another event on April 2, 2001 the He/O ratio increased from 80 to 700. A significant increase in He/O ratio is not observed during weaker CMEs. Furthermore, it was also observed that not all increases in the ratio were accompanied by CMEs. The increase in He/O ratio prior to the CME arrival might be used as a way to predict future events.