A43C-3292:
An Open-Path Tunable Diode Laser Sensor for Simultaneous Measurement of Methane And Carbon Dioxide

Thursday, 18 December 2014
Diana Michelle Bailey1, Erin M Adkins1, Emily Lynn Wilson2 and John Houston Houston Miller1, (1)George Washington University, Chemistry, Washington, DC, United States, (2)NASA/GSFC, Greenbelt, MD, United States
Abstract:
In a collaboration between NASA Goddard Space Flight Center, University of Alaska-Fairbanks, and George Washington University a study of the feedbacks to climate change caused by thawing permafrost has been initiated. An array of ground experiments at three unique permafrost sites will record permafrost depth, structure, meteorological data, and emissions of key greenhouse gases during a springtime permafrost thaw. Ground data will be linked to climate models and landscape structure from satellite imagery to gauge the magnitude of the feedbacks.

GWU will deploy an open path instrument for independent measurement of ground-level carbon dioxide and methane. For several decades, our laboratory has developed diode laser absorption techniques using mid-infrared diode lasers as well as cavity- enhanced absorption measurements using near-infrared source. In the current project, we will continue to develop a system for open path measurements that builds on our past experience with deployment of multi-laser, multi species sensors. Spectral simulations suggest that at ambient levels of CO2 and CH4 (390 and 2 ppmV, respectively) we will observe extinction coefficients of ≈ 10-4 m-1 or ≈ 1% absorption over a 200 m path. Prior work in our laboratory suggests that a SNR in excess of 100 will be achievable at these absorption levels using wavelength-modulation techniques.

Wavelength modulation spectroscopy entails applying a small amplitude modulation (on the order of the width of a spectral feature) to a laser’s emitted frequency as it tunes through a spectrum. This is readily accomplished with near infrared telecom lasers whose frequency can be swept by varying the injection current going into the laser at fixed temperature. By sampling the detector’s signal at a multiple of the modulation frequency, the resulting signal takes on the appearance of the spectrum’s derivative. Typically, this is accomplished using a lock-in amplifier. To avoid the power burden of this electrical component we are exploring the use of digital signal processing using the microcontroller embedded in the sensor.

Here we report on progress on the sensor’s construction as well as demonstration of it for making both lab and field measurements using both “traditional” lock-in based demodulation for WMS as well as its use with our software-based, WMS scheme.