Cryovolcanic Conduit Evolution and Eruption on Icy Satellites

Friday, 19 December 2014: 10:35 AM
Karl L Mitchell, California Institute of Technology Jet Propulsion Laboratory, Pasadena, CA, United States
In silicate volcanism, such as on Earth or Io, eruptions typically result from fracture formation caused by interaction of tectonic stresses with inflating, pressurized magma sources, leading to transport of melt through an evolving conduit. On icy satellites the paradigm may be similar, resulting from some combination of tidal stresses and expansion of freezing water within, or near the base of, an ice shell. Such a fracture will result in eruption if mass continuity can be established, with buoyancy aided by exsolution and expansion of dissolved volatiles. After onset, conduit shape evolves due to: (1) shear-stresses or frictional erosional; (2) wallrock “bursting” due to massive wall stresses; (3) wall melting or condensation of particles due to heat transfer; or (4) changes in applied stresses.

Preliminary thermodynamic and fluid mechanical analysis suggests some initial cooling during ascent resulting from exsolution and expansion of volatiles, thermally buffered by freezing, Conduit contraction may occur, and so evolution towards a deep, gas-filled plume chamber is difficult to accommodate without evoking a co-incidental process. Conduit flaring occurs near the surface where velocities are greatest, enhancing erosion. Here, viscous dissipative heating exceeds adiabatic cooling, and so some boiling (a few wt%) may occur. In contrast with silicate volcanism, decompression to below the triple point will occur within conduit, vent or jet, resulting in rapid freezing and boiling of the remaining water at a 6.8:1 ratio. Subsequent isentropic or adiabatic expansion within erupting jets may result in a few percent net of condensation or sublimation. These effects combined lead to ~4:1-7:1 solid:vapor ratios in the jet for most eruption conditions.

These figures are consistent with the ~6:1 inferred in Enceladus’ jets, supporting the hypothesis that the Enceladus plume draws from a subsurface body of liquids through a conduit. Similar results are anticipated if cryovolcanic plumes are confirmed on Europa. However, eruption from an ocean is more challenging there, as far greater volatile contents would be required to facilitate mass continuity from an initial fracture, and hence eruption, from the higher pressure source. Shallower sources, such as proposed under chaos, are less challenging.