C21A-0310:
Calibration and Validation of Airborne LiDAR at McMurdo Station, Antarctica for Operation IceBridge

Tuesday, 16 December 2014
John G Sonntag, URS Corporation, Wallops Island Remote Sensing, San Francisco, CA, United States
Abstract:
Airborne LiDAR flight operations based at McMurdo Station, Antarctica, present unusual challenges for calibrating and validating the sensor measurements at the level of a few centimeters. NASA's Airborne Topographic Mapper (ATM) team prefers to perform regular, near-daily calibrations of range and angular biases of our sensor for the lengthy field deployments typical for Operation IceBridge (OIB). For the fall 2013 OIB deployment to McMurdo, we had to adapt our usual technique of regular overflights of an independently-surveyed airport parking ramp to deal with the fact that the McMurdo airfield was located on tidally-influenced sea ice, and that very few nearby durable surfaces were free of variable-depth snow during the OIB deployment. We detail our approach for dealing with these challenges, which included multiple GPS/vehicle surveys of the sea ice runway to quantify surface changes due to grooming operations, combined with GPS tide-gauge measurements of the runway's tidal motion. We also conducted a remote GPS/vehicle survey of a mostly snow-free road on Black Island, and included both sites during near-daily overflights with the ATM. We discuss the quantitative results of these surveys and the associated ATM overflights, and present conclusions for future deployments. Finally we discuss a related validation effort in which we compare ATM results from overflights of snow-free areas in the Dry Valleys with ATM surveys of the same area from a 2001 effort there.