Inner Magnetosphere keV Ion Drift Path Boundaries as Observed by the Van Allen Probes

Monday, 15 December 2014: 4:42 PM
Robert J Strangeway, University of California Los Angeles, Los Angeles, CA, United States, Jichun Zhang, University of New Hampshire, Durham, NH, United States and Brian Larsen, Los Alamos National Laboratory, Los Alamos, NM, United States
The drifts of keV ions in the inner magnetosphere are controlled by both electric field drifts and gradient and curvature (i.e., magnetic field) drifts, and further the magnetic field drifts oppose the corotation electric field drift in the dusk local time sector. Consequently, the ion drift paths can be quite complicated with the medium-energy ions drifting close to the Earth, but still being on open drift paths. In addition, structure in the energy-time spectrograms can be a consequence of either particle injection or particle loss. In order to distinguish between the two we will compare the energy-time spectrograms acquired with the Helium Oxygen Proton Electron (HOPE) mass spectrometer on board the Van Allen Probes with predictions of drift path boundaries. The simplest model assumes a uniform convection electric field and dipole model field, and we will use this a starting point for the comparison. The model can be modified to include shielding of the convection electric field, and rotation in local time of the zero-energy dusk-side stagnation point. As an additional check of the model we will compare the electric field used in the model with the electric field as measured by the Van Allen Probes, as well as the validity of using a dipole magnetic field through comparison with the measured magnetic field.