A Numerical Study on Small-Scale Permeability Creation Associated with Fluid Pressure Induced Inelastic Shearing

Thursday, 18 December 2014
Daniel Vogler, Florian Amann and Peter Bayer, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
Anthropogenic perturbations in a rock mass at great depth cause a complex thermal-hydro-mechanical (THM) response. This is of particular relevance when dealing with enhanced geothermal systems (EGS) and unconventional oil and gas recovery utilizing hydraulic fracturing. Studying the key THM coupled processes associated with specific reservoir characteristics in an EGS are of foremost relevance to establish a heat exchanger able to achieve the target production rate.

Many reservoirs are naturally low permeable, and the target permeability can only be achieved through the creation of new fractures or inelastic and dilatant shearing of pre-existing discontinuities. The latter process, which is considered to irreversibly increase the apertures of pre-existing discontinuities, has been shown to be especially important for EGS. Common constitutive equations linking the change in hydraulic aperture and the change in mechanical aperture are based on the basic formulation of the cubic law, which linearly relates the flow rate in a fracture to the pressure gradient. However, HM-coupled laboratory investigations demonstrate, that the relation between the mechanical and the hydraulic aperture as assumed in the cubic law, is not valid when dealing with very small initial apertures, which are likely to occur at great depth.

In a current study, we investigate the relevance of this discrepancy for the early stage of permeability creation in an EGS, where massive fluid injections trigger largely irreversible in-elastic shearing of critically stressed discontinuities. Understanding small-scale effects in fractures in EGS during fluid injection is crucial to predict reservoir fluid production rates and seismic events.

Our study aims to implement an empirical constitutive law in an existing discrete fracture code, and calibrate this against experimental data showing the irreversible shearing induced permeability changes. This empirical relation will later be used to quantify the relevance of uncertainties in reservoir characterisation such as discrete fracture networks (DFN) and in-situ state of stress.