A31E-3071:
Effects of Chemical Aging on the Heterogeneous Freezing of Organic Aerosols

Wednesday, 17 December 2014
Kristen Collier and Sarah D Brooks, Texas A & M University, College Station, TX, United States
Abstract:
Organic aerosols are emitted into the atmosphere from a variety of sources and display a wide range of effectiveness in promoting the nucleation of ice in clouds. Soot and polycyclic aromatic hydrocarbons (PAHS) arise from incomplete combustion and other pollutant sources. Hydrocarbon compounds in diesel motor oil and other fuel blends include compounds such as octacosane (a straight saturated alkane), squalane (a branched saturated alkane) and squalene (an unsaturated branched alkene). At temperatures above -36°C, the formation of ice crystals in the atmosphere is facilitated by heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN). The variability in ability of organic particles to facilitate heterogeneous ice nucleation causes major uncertainties in predictions of aerosol effects on climate. Further, atmospheric aerosol composition and ice nucleation ability can be altered via chemical aging and reactions with atmospheric oxidants such as ozone. In this study, we take a closer look at the role of chemical oxidation on the efficiency of specific IN during contact freezing laboratory experiments. The freezing temperatures of droplets in contact with representative organic aerosols are determined through the use of an optical microscope apparatus equipped with a cooling stage and a digital camera. Chemical changes at the surface of aerosols due to ozone exposure are characterized using Raman Microspectroscopy and Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance. Our results indicate that oxidation of certain atmospheric organics (soot and PAHS) enhances their ice nucleation ability. In this presentation, results of heterogeneous nucleation on various types of organic aerosols will be presented, and the role of structure in promoting freezing will be discussed.