Mapping Glacial Weathering Processes with Thermal Infrared Remote Sensing: A Case Study at Robertson Glacier, Canada

Tuesday, 16 December 2014
Alicia M Rutledge, Philip R Christensen, Everett Shock and Peter A Canovas III, Arizona State University, Tempe, AZ, United States
Geologic weathering processes in cold environments, especially subglacial chemical processes acting on rock and sediment, are not well characterized due to the difficulty of accessing these environments. Glacial weathering of geologic materials contributes to the solute flux in meltwater and provides a potential source of energy to chemotrophic microbes, and is thus an important component to understand. In this study, we use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to map the extent of glacial weathering in the front range of the Canadian Rockies using remotely detected infrared spectra. We ground-truth our observations using laboratory infrared spectroscopy, x-ray diffraction, and geochemical analyses of field samples. The major goals of the project are to quantify weathering inputs to the glacial energy budget, and to link in situ sampling with remote sensing capabilities.

Robertson Glacier, Alberta, Canada is an excellent field site for this technique as it is easily accessible and its retreating stage allows sampling of fresh subglacial and englacial sediments. Infrared imagery of the region was collected with the ASTER satellite instrument. At that same time, samples of glacially altered rock and sediments were collected on a downstream transect of the glacier and outwash plain. Infrared laboratory spectroscopy and x-ray diffraction were used to determine the composition and abundance of minerals present. Geochemical data were also collected at each location, and ice and water samples were analyzed for major and minor elements. Our initial conclusion is that the majority of the weathering seems to be occurring at the glacier-rock interface rather than in the outwash stream.

Results from both laboratory and ASTER data indicate the presence of leached weathering rinds. A general trend of decreasing carbonate abundances with elevation (i.e. residence time in ice) is observed, which is consistent with increasing calcium ion meltwater concentrations towards the glacier terminus. These results are used to map the extent of regional glacial chemical weathering using ASTER thermal imagery.