NH53A-3871:
Variation of Strom Surge Propagation in a Shallow Estuary with Sea Level Rise
Abstract:
Hurricane Sandy made landfall along the New Jersey coast at 8pm EDT on October 29th, 2012. At landfall wind gusts of between 129 and 145 km/hr were recorded in New York and New Jersey. The large wind field associated with the storm generated an extreme storm surge north of the eye at landfall resulting in high-velocity overland storm surge along the northern barrier Islands of the Barnegat Bay followed 7 hours later by a rapid rise in water level along the bayside of the barrier islands.A high-resolution, hydrodynamic model for the Barnegat Bay estuary; including its vast intertidal areas, has been developed and validated to simulate the observed Sandy storm surge. The Barnegat Bay Inundation Model (BBIMS) has a constant 100m resolution and is nested within the three dimensional Stevens NYHOPS ocean circulation model at its offshore open boundary. Wetting and drying of land features in the model’s external time step is as low as 0.1 sec in its 2D barotropic mode. This mode provides for the dynamic prediction of depth integrated flood elevations and velocities across land features during inundation events.
The BBIMS was calibrated using the NYHOPS hindcast of Hurricane Sandy. The hindcast utilized Sandy over ocean wind field and atmospheric pressure data, offshore wave and tidal boundary forcing, atmospheric heat fluxes, interior stream flow data and was validated against observed water levels and measured high water marks. A comparison against 6 water level time series measured by USGS tide gauges located in the Barnegat Bay verified that the model is able to capture the spatial and temporal variation of water levels in the Bay observed during Hurricane Sandy. A comparison against the verified high water marks found that the model is capable of hincasting overland water elevation to within 0.63ft (one standard deviation) at 71% of the total water marks measured.
The modeling results show that strong northerly winds along the axis of the estuary prior to landfall suppressed the storm surge in the northern portion of the Bay. A rapid shift in wind direction to southerly winds after landfall allowed the surge to propagate north up the estuary as a shallow water wave (Figure 1). The effect of future sea levels on surge propagation in the estuary is investigated through increases in model mean sea level.