H43B-0962:
Fate and Transport of TCE Solvents Through Saturated Karst Aquifer

Thursday, 18 December 2014
Marvic Carmona, Angel A Anaya and Ingrid Yamill Padilla, University of Puerto Rico Mayaguez, Mayaguez, PR, United States
Abstract:
Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM).

Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are associated with multiple flow path connectivity. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase. Response times to TCE concentrations depend on the mode of transport, and region of flow paths.