GP31A-3674:
3D magnetotelluric inversion with full distortion matrix

Wednesday, 17 December 2014
Alexander V Gribenko1,2 and Michael Semenovich Zhdanov1,2, (1)University of Utah, Salt Lake City, UT, United States, (2)TechnoImaging, Salt Lake City, UT, United States
Abstract:
Distortion of regional electric fields by local structures represent one of the major problems facing three-dimensional magnetotelluric (MT) interpretation. Effect of 3D local inhomogenities on MT data can be described by a real 2x2 distortion matrix. In this project we develop a method of simultaneous inversion of the full MT impedance data for 3D conductivity distribution and for the distortion matrix. Tikhonov regularization is employed to solve the resulting inverse problem. Integral equations method is used to compute MT responses. Minimization of the cost functional is achieved via conjugate gradient method. The inversion algorithm is tested on the synthetic data from Dublin Secret Model II (DSM 2) for which multiple inversion solutions are available for comparison. Inclusion of the distortion matrix provides faster convergence and allows coarser discretization of the near-surface while achievingsimilar or better data fits as inversion for the conductivity only with finely discretized shallow regions. As a field data example we chose a subset of the EarthScope MT dataset covering Great Basin and adjacent areas of the Western United States. Great Basin data inversion identified several prominent conductive zones which correlate well with areas of tectonic and geothermal activity.