PP41B-1363:
1,500 YEAR PERIODICITY IN CENTRAL TEXAS MOISTURE SOURCE VARIABILITY RECONSTRUCTED FROM SPELEOTHEMS

Thursday, 18 December 2014
Eric W James1, Corinne I Wong2, Maxwell M Silver3, Jay L Banner1 and MaryLynn Musgrove4, (1)University of Texas at Austin, Department of Geological Sciences, Austin, TX, United States, (2)University of California Davis, Earth and Planetary Sciences, Davis, CA, United States, (3)Pacific Lutheran University, Dept. of Geosciences, Tacoma, WA, United States, (4)USGS, Austin, TX, United States
Abstract:
Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. Presently, there are few high-resolution Holocene climate records for this region, which limits the assessment of precipitation variability during a relatively stable climatic interval that comprises the closest analogue to the modern climate state. To address this, we present speleothem growth rate and δ18O records from two central Texas caves that span the mid to late Holocene, and assess hypotheses about the climate processes that can account for similarity in the timing and periodicity of variability with other regional and global records. A key finding is the independent variation of speleothem growth rate and δ18O values, suggesting the decoupling of moisture amount and source. This decoupling likely occurs because i) the often direct relation between speleothem growth rate and moisture availability is complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and ii) speleothem δ18O variations reflect changes in moisture source (i.e., proportion of Pacific- vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount. Furthermore, we document a 1,500-year periodicity in δ18O values that is consistent with variability in the percent of hematite-stained grains in North Atlantic sediments, North Pacific SSTs, and El Nino events preserved in an Ecuadorian lake. Previous modeling experiments and analysis of observational data delineate the coupled atmospheric-ocean processes that can account for the coincidence of such variability in climate archives across the northern hemisphere. Reduction of the thermohaline circulation results in North Atlantic cooling, which translates to cooler North Pacific SSTs. The resulting reduction of the meridional SST gradient in the Pacific weakens the air-sea coupling that modulates ENSO activity, resulting in faster growth of interannual anomalies and larger mature El Niño relative to La Niña events. The asymmetrically enhanced ENSO variability can account for a greater portion of Pacific-derived moisture reflected by speleothem δ18O values.