OS44A-03:
Observations of Marine Atmospheric Boundary Layer Processes and High-Frequency Internal Waves from Ship-Launched UAVs and Ship-based Instrumentation

Thursday, 18 December 2014: 4:30 PM
Ben D Reineman1, Luc Lenain2 and Wallace Kendall Melville2, (1)Scripps Institution of Oceanography, La Jolla, CA, United States, (2)University of California San Diego, La Jolla, CA, United States
Abstract:
We present measurements obtained during the October 2012 EquatorMix experiment (0N, 140W), in which we deployed ship-launched and recovered Boeing-Insitu ScanEagle unmanned aerial vehicles (UAVs) to measure momentum and energy fluxes, ocean surface processes, and the marine atmospheric boundary layer (MABL). The UAV dataset is complemented by measurements from a suite of ship-based instrumentation, including a foremast MABL eddy covariance system, scanning and point lidar altimeters, a laser Doppler wind profiler, and a digitized X-band radar system (WaMoS). The combination of the unmanned aircraft and the ship instrumentation provides a novel and valuable dataset of many air-sea interaction phenomena, extending from 100s of meters below the surface to 1500 m above. Ocean surface displacements observed with the UAV lidar altimeter (coupled with a GPS/IMU) give evidence of high-frequency equatorial internal waves, with measurements consistent and coherent with those from ship-based X-band radar, the Hydrographic Doppler Sonar System (HDSS), and a theoretical model. UAV-based flux measurements at low altitudes (down to 30 meters) are consistent with ship-based eddy covariance measurements, but reveal differences between along- and crosswind sampling flight legs associated with longitudinal roll structures that are not captured by the ship measurements from tracks mainly in the upwind-downwind directions.