SH33A-4146:
A Gyrokinetic Approach to Low Frequency Anisotropy-Driven Instabilities in the Solar Wind

Wednesday, 17 December 2014
Jay Johnson and Peter Porazik, Princeton Plasma Physics Lab, Princeton, NJ, United States
Abstract:
Observational surveys of temperature anisotropy in the solar wind indicate that anisotropy is bounded over a wide range of plasma beta and the anisotropy bounds appear to be predominately controlled by wave-particle interactions associated with mirror and oblique firehose instabilities. We present a reduced kinetic description that exploits gyrosymmetry (a symmetry associated with the gyromotion), providing an efficient, self-consistent approach that can be utilized in global models of the solar wind. We discuss the underlying physics of the mirror and firehose instabilities that allow for a reduced gyrokinetic description, and we verify the approach through comparisons of theory and simulations using gyrokinetic, hybrid, and fully kinetic descriptions. We present simulations showing the nonlinear development and saturation of the mirror instability and explain the amplitude and structure of the nonlinear state in terms of particle trapping. We also consider the nonlinear development of the oblique firehose instability and the associated wave spectra.