IN23D-3752:
UCVM: Open Source Software for Understanding and Delivering 3D Velocity Models

Tuesday, 16 December 2014
David Gill1, Patrick Small2, Philip J Maechling1, Thomas H Jordan1, John H Shaw3, Andreas Plesch3, Po Chen4, En-Jui Lee1, Ricardo Taborda5, Kim Bak Olsen6 and Scott Callaghan1, (1)Southern California Earthquake Center, Los Angeles, CA, United States, (2)University of Southern California, Los Angeles, CA, United States, (3)Harvard University, Cambridge, MA, United States, (4)University of Wyoming, Laramie, WY, United States, (5)Center for Earthquake Research and Information, Memphis, TN, United States, (6)San Diego State Univ, San Diego, CA, United States
Abstract:
Physics-based ground motion simulations can calculate the propagation of earthquake waves through 3D velocity models of the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) framework to help researchers build structured or unstructured velocity meshes from 3D velocity models for use in wave propagation simulations.

The UCVM software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Currently, the platform supports multiple California models, including SCEC CVM-S4 and CVM-H 11.9.1, and has been designed to support models from any region on earth. UCVM is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules.

In this presentation, we describe improvements to the UCVM software. The current version, UCVM 14.3.0, released in March of 2014, supports the newest Southern California velocity model, CVM-S4.26, which was derived from 26 full-3D tomographic iterations using CVM-S4 as the starting model (Lee et al., this meeting), and the Broadband 1D velocity model used in the CyberShake 14.2 study. We have ported UCVM to multiple Linux distributions and OS X.

Also included in this release is the ability to add small-scale stochastic heterogeneities to extract Cartesian meshes for use in high-frequency ground motion simulations. This tool was built using the C language open-source FFT library, FFTW. The stochastic parameters (Hurst exponent, correlation length, and the horizontal/vertical aspect ratio) can be customized by the user.

UCVM v14.3.0 also provides visualization scripts for constructing cross-sections, horizontal slices, basin depths, and Vs30 maps. The interface allows researchers to visually review velocity models . Also, UCVM v14.3.0 can extract isosurfaces of shear-wave velocities equal to 1 km/s (Z1.0) and 2.5 km/s (Z2.5) for any of the registered velocity models. We have also improved our open source distribution by including a user’s guide, an advanced user’s guide, and a developer’s guide so that users of all levels can get started using and extending the UCVM platform.