Critical Watersheds: Climate Change, Tipping Points, and Energy-Water Impacts

Wednesday, 17 December 2014: 4:45 PM
Richard Stephen Middleton1, Michael Brown1, Ethan Coon2, Rodman Linn1, Nathan G McDowell1, Scott L Painter1 and Chonggang Xu1, (1)Los Alamos National Laboratory, Los Alamos, NM, United States, (2)Los Alamos National Lab, Los Alamos, NM, United States
Climate change, extreme climate events, and climate-induced disturbances will have a substantial and detrimental impact on terrestrial ecosystems. How ecosystems respond to these impacts will, in turn, have a significant effect on the quantity, quality, and timing of water supply for energy security, agriculture, industry, and municipal use. As a community, we lack sufficient quantitative and mechanistic understanding of the complex interplay between climate extremes (e.g., drought, floods), ecosystem dynamics (e.g., vegetation succession), and disruptive events (e.g., wildfire) to assess ecosystem vulnerabilities and to design mitigation strategies that minimize or prevent catastrophic ecosystem impacts.

Through a combination of experimental and observational science and modeling, we are developing a unique multi-physics ecohydrologic framework for understanding and quantifying feedbacks between novel climate and extremes, surface and subsurface hydrology, ecosystem dynamics, and disruptive events in critical watersheds. The simulation capability integrates and advances coupled surface-subsurface hydrology from the Advanced Terrestrial Simulator (ATS), dynamic vegetation succession from the Ecosystem Demography (ED) model, and QUICFIRE, a novel wildfire behavior model developed from the FIRETEC platform. These advances are expected to make extensive contributions to the literature and to earth system modeling.

The framework is designed to predict, quantify, and mitigate the impacts of climate change on vulnerable watersheds, with a focus on the US Mountain West and the energy-water nexus. This emerging capability is used to identify tipping points in watershed ecosystems, quantify impacts on downstream users, and formally evaluate mitigation efforts including forest (e.g., thinning, prescribed burns) and watershed (e.g., slope stabilization). The framework is being trained, validated, and demonstrated using field observations and remote data collections in the Valles Caldera National Preserve, including pre- and post-wildfire and infestation observations. Ultimately, the framework will be applied to the upper Colorado River basin. Here, we present an overview of the framework development strategy and latest field and modeling results.