Wildfires and storms: Increased vulnerability of water quality in the southwestern U.S. in the face of climate change

Tuesday, 16 December 2014
Sheila F Murphy1, Jeffrey H Writer2, Richard Blaine McCleskey1 and Deborah A Martin1, (1)USGS, Boulder, CO, United States, (2)University of Colorado at Boulder, Education, Boulder, CO, United States
Communities in the southwestern U.S. rely on forested watersheds to provide high-quality water, but these watersheds are prone to major disturbance by wildfire. The loss of vegetation and litter can decrease water storage and infiltration and decrease nutrient uptake, leading to enhanced surface runoff, erosion, and nutrient export compared to undisturbed watersheds. Post-wildfire impacts on water quality vary widely across geographic regions, and are largely driven by post-fire storm timing and intensity. In the southwestern U.S., the North American Monsoon can produce high-intensity rain from July through September. A better understanding of the post-fire water-quality response of watersheds to monsoonal storms in this region is therefore critical. The Fourmile Canyon Fire burned 2600 ha near Boulder, Colorado in September 2010, including 23% of the Fourmile Creek watershed. This watershed had been recovering from historical mining activity, and dispersed waste rock and mine tailings were only partially revegetated before the wildfire. We collected water quality, hydrological, and meteorological data with high temporal and spatial density upstream and downstream of the burned area for 4 years post-fire. For 9 months post-fire, the area received snow or low-intensity rain, and the difference in stream water chemistry between burned and unburned watersheds was minimal. However, in the summer of 2011, and in the following two summers, relatively common monsoonal storms caused dramatic, but short-lived, increases in discharge, sediment, nitrate, dissolved organic carbon, and metals downstream of the burned area. Such pulses can degrade aquatic ecosystems, impair water treatability, and decrease reservoir capacity. Climate change is projected to increase wildfire frequency and size and lead to an earlier and longer wildfire season. Simultaneously, storm frequency and intensity are predicted to increase, and the monsoon season may occur later in the year, potentially decreasing the average length of time between wildfire and subsequent high-intensity rain events. This suggests that substantial water-quality impacts may be more common in the future, resulting in a new paradigm for water treatment in the southwestern U.S.