Implementation and testing of a real-time 3-component phase picking program for Earthworm using the CECM algorithm

Thursday, 18 December 2014
Ben I Baker and Paul A Friberg, Instrumental Software Technologies, Inc. (ISTI), New Paltz, NY, United States
Modern seismic networks typically deploy three component (3C) sensors, but still fail to utilize all of the information available in the seismograms when performing automated phase picking for real-time event location. In most cases a variation on a short term over long term average threshold detector is used for picking and then an association program is used to assign phase types to the picks. However, the 3C waveforms from an earthquake contain an abundance of information related to the P and S phases in both their polarization and energy partitioning. An approach that has been overlooked and has demonstrated encouraging results is the Component Energy Comparison Method (CECM) by Nagano et al. as published in Geophysics 1989. CECM is well suited to being used in real-time because the calculation is not computationally intensive. Furthermore, the CECM method has fewer tuning variables (3) than traditional pickers in Earthworm such as the Rex Allen algorithm (N=18) or even the Anthony Lomax Filter Picker module (N=5). In addition to computing the CECM detector we study the detector sensitivity by rotating the signal into principle components as well as estimating the P phase onset from a curvature function describing the CECM as opposed to the CECM itself. We present our results implementing this algorithm in a real-time module for Earthworm and show the improved phase picks as compared to the traditional single component pickers using Earthworm.