B13A-0173:
The Automated Dynamic Directed Evolution Chamber: A Tool for Studying Extremophile-Environment Interactions in Real Time
Abstract:
Life acclimated to harsh conditions is frequently difficult to study using normal lab techniques and conventional equipment. Simplified studies using in-lab 'simulated' extreme environments, such as UV bulbs or cold blocks, are manually intensive, error-prone, and lose many complexities of the microbe/environment interaction.Our first prototype showed successful iterations of microbial growth and thermal exposure. Our second prototype, presented here, performs an demonstration of repeated exposure of Escherichia coli to ultraviolet radiation, a well-established procedure. As the E. coli becomes more resistant to ultraviolet radiation, the device detects their increased survival and growth and increases the dosage accordingly. Calibration data for the instrument was generated by performing the same proof-of-concept exposure experiment, at a smaller scale, by hand.
Current performance data indicates that our finalized instrument will have the ability to run hundreds of iterations with multiple selection pressures. The automated sensing and adaptive exposure that the device provides will inform the challenges of managing and culturing life tailored to uncommon environmental stresses.
We have designed this device to be flexible, extensible, low-cost and easy to reproduce. We hope that it enter wide use as a tool for conducting scalable studies of the interaction between extremophiles and multiple environmental stresses, and potentially for generating artificial extremophiles as analogues for life we might find in extreme environments here on Earth or elsewhere.