Disturbance Regimes and Landscape Heterogeneity in the Boreal Forest

Friday, 19 December 2014
Evan A Lyons and Yongwei Sheng, University of California Los Angeles, Los Angeles, CA, United States
Circling the northern high latitudes, the boreal forest is the largest contiguous forest ecoregion in the world. Far from a homogeneous carpet of trees, the boreal forest is a patchwork of land cover types including evergreen and deciduous trees, meadows, lakes, and wetlands. Due to its size, location, and structure, the boreal forest is an important component of the regional and global climate system through storage of carbon in cold organic soils and direct influence on the solar energy budget. This study integrates remote sensing and GIS products from different sub-fields working in the pan-Arctic region to investigate fire and permafrost-degradation, the land cover shaping processes that help determine the fate of the boreal forest. These disturbance processes are subject to change with climate and hold the potential for rapid change to the structure of the boreal forest. We identify regions at risk for rapid change, quantify the contributions of different disturbance processes, and analyze patterns of post disturbance recovery.