GP31A-3681:
Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

Wednesday, 17 December 2014
Yuxiang Zhang1,2, Kerry Key1, Jeffrey Ovall3 and Michael Holst4, (1)IGPP/SIO/UCSD, La Jolla, CA, United States, (2)San Diego State University, San Diego, CA, United States, (3)Portland State University, Portland, OR, United States, (4)University of California San Diego, La Jolla, CA, United States
Abstract:
We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis.

For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently.

We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.