B41E-0117:
Distribution of dissolved and particulate trace metals in Arctic sea ice

Thursday, 18 December 2014
Meghan Taylor1, Ingrid L Hendy2, Sarah Aciego1 and Kyle Meyer3, (1)University of Michigan Ann Arbor, Ann Arbor, MI, United States, (2)University of Michigan Ann Arbor, Geological Sciences, Ann Arbor, MI, United States, (3)University of Michigan, Ann Arbor, MI, United States
Abstract:
Iron (Fe) is an essential biolimiting micronutrient, however, the bioavailablility of Fe is dependent on source and speciation. In a high nutrient/low chlorophyll region of the ocean such as the Arctic, sea ice is an important aggregator of dissolved and particulate Fe from aerosol, lithogenic, and biogenic sources. While particulate Fe is less bioavailable than dissolved Fe, it is far more abundant in sea ice. As a result, sea ice directly enhances productivity by ice entrapment of mineral dust particulates containing Fe, which can be released into the surface ocean waters during melting. In seawater underlying sea ice, Fe can be concentrated up to two orders of magnitude higher than in the ice-free open ocean (Lannuzel et al., 2011).

A transect of sea ice cores were collected in the spring of 2014 offshore of Barrow, AK, and the Canadian Arctic Archipelago to capture a gradient of sediment contributions from shelf sediments to aeolian sediments. At Barrow, AK, land fast first year ice was sampled. In the Canadian Arctic, both multi-year (pack ice) and first year (land fast) ice cores were retrieved. First year ice cores were between 100-150 cm thick and the multi year core was 195 cm thick. Cores were subsampled by depth and filtered. The resulting ice core sediments were analyzed for elemental composition, and multistep Fe-leaching experiments were conducted to determine the fraction of soluble Fe. Thus we have ascertained the solubility of particulate Fe prior to onset of melt season. Dissolved trace metals were also analyzed to ascertain changes in concentration with ice core depth of lithogenic elements (Mn, Al) and biologically important elements (Si, Mo, Cu, Zn). Preliminary results show some enrichment of lithogenic inputs near surface, indicating dust deposition, and lower portions of the cores, suggesting resuspended sediments from the continental shelf. Concentrations of some biologically important elements decrease with depth, suggesting possible biological uptake by sea ice algae.