T51B-4634:
Slab Driven Plate Motions and Three-dimensional Mantle Flow Pathways in the Central American Subduction Zone
Friday, 19 December 2014
Margarete Ann Jadamec, University of Houston, Dept. of Earth and Atmospheric Sciences, Houston, TX, United States and Karen M. Fischer, Brown University, Dept. of Earth, Environmental and Planetary Sciences, Providence, RI, United States
Abstract:
We present a series of three-dimensional (3D), high-resolution, end-member tectonic configurations of the Central American plate system and use these to solve for the 3D viscous mantle flow and surface plate motions. The 3D geodynamic models test the relative control of the viscosity structure (Newtonian versus Composite), subducting plate geometry (continuous slab versus Cocos-Nazca slab gap), and overriding plate thickness (uniform versus laterally variable) on the predicted motion of the Cocos and Nazca plates and the slab-induced 3D flow field in the upper mantle. Models using the composite viscosity formulation result in increased surface plate motions, which better fit the observed motion of the Cocos and Nazca plates. This is particularly significant because these 3D regional models contain the entire Cocos plate, suggesting the importance of the non-linear rheology in models that aim to predict surface plate motions. Faster flow velocities occur in models using the composite viscosity due to the decreased resistance to subduction and reduced viscous support of the slab as the mantle surrounding the slab undergoes non-linear weakening. A zone of partial decoupling between the uppermost mantle and lithosphere, thus, naturally develops due to the composite viscosity formulation. Models that include a gap between the Cocos and Nazca slabs better fit the mantle flow pathways interpreted from the geochemical signatures, as material is brought from beneath the Cocos plate around the slab edge and northward into the mantle wedge beneath Central America. The mantle-lithosphere decoupling is enhanced in models with the slab gap, wherein the mantle flow field contains both counter-clockwise toroidal flow around the Cocos slab edge and clockwise toroidal flow around the northern Nazca slab edge, both of which are non-parallel to surface motions. The models also demonstrate that overriding plate thickness places a control on both the predicted surface motion and underlying mantle flow field, consistent with global models. In addition to the broader application of providing a mechanism for localized plate-mantle decoupling, the results imply that high-resolution, geographically referenced geodynamic models can be used to constrain modern plate geometries where unconstrained from seismicity.