H21A-0700:
Extensive CO2 Leakage From Extinct and Modern CO2 Reservoirs in New Mexico and Arizona: Evaluating the Role of Seal Bypass and Large-Volume Travertine Deposition With Implications For CO2 Sequestration

Tuesday, 16 December 2014
Alexandra Priewisch1, Laura J Crossey2, Karl E Karlstrom2 and Peter Mozley3, (1)New Mexico Highlands University, Las Vegas, NM, United States, (2)University of New Mexico Main Campus, Albuquerque, NM, United States, (3)New Mexico Tech, Socorro, NM, United States
Abstract:
Quaternary large-volume travertine deposits in New Mexico and Arizona occur along the Rio Grande rift and on the southeastern Colorado Plateau. Travertines are natural analogues for CO2 leakage along fault systems because they form due to the degassing of CO2 from carbonic groundwater that migrates up fault systems. Travertine volumes can be used to infer integrated CO2 leakage along faults, which includes: (1) CO2 that becomes fixed in CaCO3/travertine (tons of carbon converted into tons of carbonate), (2) the amount of CO2 that degassed into the atmosphere (twice the amount of (1), based on reaction stoichiometry), (3) dissolved CO2 that is carried away with the water discharging from a spring (based on modern spring discharge and dissolved carbon content), and (4) CO2 that escapes through the soil (based on modern soil flux measurements). The total CO2 leakage (1 and 2) calculated in this study is estimated as ~6 Gt (gigatons) whereas the integrated CO2 leakage (1-4) is estimated as ~128 Gt over ~450,000 years of travertine accumulation. U-series dating of the travertines shows that the deposits formed episodically which implies that CO2 leakage occurred episodically. Better understanding of integrated CO2 leakage along fault systems is needed to better constrain global estimates of natural CO2 fluxes, and to help in risk assessment of CO2 sequestration sites designed to effectively store anthropogenic CO2 in the subsurface.