MR13A-05:
Applications of Mapping and Tomographic Techniques in Gem Sciences

Monday, 15 December 2014: 2:32 PM
Andy H. Shen, China University of Geosciences, Wuhan, China
Abstract:
Gem Sciences are scientific studies of gemstones – their genesis, provenance, synthesis, enhancement, treatment and identification. As high quality forms of specific minerals, the gemstones exhibit unusual physical properties that are usually unseen in the regular counterparts.

Most gemstones are colored by trace elements incorporated in the crystal lattice during various growth stages; forming coloration zones of various scales. Studying the spectral and chemical contrast across color zones helps elucidating the origins of colors. These are done by UV-visible spectrometers with microscope and LA-ICPMS in modern gemological laboratories.

In the case of diamonds, their colored zones arise from various structural defects incorporated in different growth zones and are studied with FTIR spectrometers with IR microscope and laser photoluminescence spectrometers. Advancement in modern synthetic techniques such as chemical vapor deposition (CVD) has created some problem for identification. Some exploratory experiments in carbon isotope mapping were done on diamonds using SIMS.

The most important issue in pearls is to identify one particular pearl being a cultured one or a natural pearl. The price difference can be enormous. Classical way of such identification is done by x-ray radiographs, which clearly show the bead and the nacre. Modern cultured pearl advancement has eliminated the need for an artificial bead, but a small piece of tissue instead. Nowadays, computer x-ray tomography (CT) scanning devices are used to depict the clear image of the interior of a pearl.

In the Chinese jade market, filling fissures with epoxy and/or wax are very commonly seen. We are currently exploring Magnetic Resonance Imaging (MRI) technique to map the distribution of artificial resin within a polycrystalline aggregates.