T23D-07:
Active Dehydration, Delamination and Deformation of Transitional Continental Crust in an Arc-Continent Collision, Taiwan

Tuesday, 16 December 2014: 3:10 PM
Timothy B Byrne, Univ Connecticut, Storrs, CT, United States, Ruey-Juin Rau, NCKU National Cheng Kung University, Tainan, Taiwan, Kate Huihsuan Chen, Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan, Hsin-Hua Huang, Institute of Earth Sciences Academia Sinica, Taipei, Taiwan, Yu-Ju Wang, National Central University, Jhongli, Taiwan and William B Ouimet, University of Connecticut, Storrs, CT, United States
Abstract:
A new study of the 3-D velocity structure of Taiwan, using a new tomographic model (Vp and Vs; Huang et al., 2014), suggests that subducted continental crust is delaminated from the subducting mantle of the Eurasia plate and progressively deformed by the subducting Philippine Sea plate. In southern Taiwan, vertical sections show an east-dipping, asymmetric lobe of low velocity that projects down dip to a band of seismicity interpreted as the Wadati-Benioff zone of the subducting Eurasian plate. Seismic tremors in the mid-crust also suggest dehydration (Chuang et al., 2014), consistent with prograde metamorphism of crustal materials. In central Taiwan, however, the seismicity of the W-B zone progressively disappears and the low velocity lobe shallows and broadens. The velocity structure of the lower and middle crust (represented by the 7.5 and 6.5 km/sec isovelocity surfaces, respectively) also appear distinctly out-of-phase, with the lower crust forming a broad, smooth synformal structure that contrasts with the higher amplitude undulations of the middle crust. These mid-crust structures appear as smaller irregular lobes separated by patches of higher velocity. In northern Taiwan, the velocity structure of the lower and middle crust again appear “in phase” and form a symmetrical crustal root centered beneath the Central Range. Seismicity patterns and 3-D analysis of the velocity structure also show the western edge of the PSP subducting beneath the eastern Central Range. We interpret these south-to-north changes to reflect the partial subduction (southern Taiwan), delamination (central Taiwan) and deformation (northern Taiwan) of continental-like crust. Support for these interpretation comes from: 1) unusually high rates of surface uplift (up to 15 mm/yr; Ching et al., 2011); 2) Vp and Vs attenuation studies that suggest anomalously high temperatures; 3) evidence for NE-SW extension; and 4) anomalous areas of low topographic relief.