B43J-07:
Modeled changes in terrestrial C storage on the Arctic coastal plain of Alaska suggest a mid-century 21st shift from C sink to source.

Thursday, 18 December 2014: 3:10 PM
Colin Tucker1, Eugenie Susanne Euskirchen1, Helene Genet1, Anthony David McGuire2, Scott T Rupp3, Amy Lynn Breen3, Thomas A Kurkowski3, Alec Bennett3 and Gary Kofinas1, (1)University of Alaska Fairbanks, Fairbanks, AK, United States, (2)University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK, United States, (3)University of Alaska Fairbanks, Scenarios Network for Alaska & Arctic Planning, Fairbanks, AK, United States
Abstract:
Arctic tundra contains significant carbon (C) stocks, which are likely to change in response to climate change, depending on the balance of plant production and decomposition responses to warming and thawing permafrost. We modeled terrestrial C over the period 1901-2100 in a 67,000 km2 region of the eastern Arctic Coastal Plain of Alaska with four dominant vegetation types: wet sedge, tussock, shrub and heath tundra. The Terrestrial Ecosystem Model (TEM) is a biogeochemical model that simulates the C and N dynamics of vegetation and soils in response to climatic drivers. The version of TEM used here includes a dynamic organic soil module that allows the size of the organic soil layer to change through time. We model historical (1900-2010) and future (2010-2100) dynamics for low, intermediate and high CO2 emissions scenarios. During the period 2000-2010, modeled net primary productivity and vegetation C were significantly positively correlated with the MODIS derived normalized difference vegetation index, as were the start and end of the growing season, and the duration of the snow-covered season. Between 1900 and 2100, C storage in vegetation increased most in shrub and tussock tundra (52 % and 43 %, respectively) and somewhat less in wet sedge and heath tundra (15 % and 21 %, respectively), consistent with observed expansion of shrubby biomass across the region. Simulated terrestrial C storage for the study region changed from 40.5 kg C m-2 (soil=39.6, vegetation=1.0) in 1901 to 42.2 kg C m-2 (soil=40.9, vegetation=1.2) in 2010. In the intermediate warming scenario, by 2050, the total terrestrial C storage in the study region increased by 0.5 kg C m-2 but by 2100, 60% of this new C storage was lost, indicating a shift from net C uptake to net C loss in the study region toward the end of the century, driven by a shift in the relative magnitudes of C inputs from litter and losses from heterotrophic respiration. These changes were correlated with a 21 day increase in growing season length and ~20 cm increase in active layer depth between 2010 and 2100, yet the entire region maintained continuous permafrost. These changes suggest the eastern Arctic Coastal Plain of Alaska will serve as a net C sink for several more decades before becoming a C source later in the century.