V21A-4728:
Modeling Seafloor Deformation at the TAG Hydrothermal Field: Feedbacks between Permeability and Poroelastic Fluid Flow?

Tuesday, 16 December 2014
Timothy J Crone, Lamont -Doherty Earth Observatory, Palisades, NY, United States, Robert A Sohn, Organization Not Listed, Washington, DC, United States and Thibaut Barreyre, WHOI, Woods Hole, MA, United States
Abstract:
Recent measurements of ocean bottom pressure suggest that hydrothermal flow induces cm-scale periodic ground surface displacement (GSD) at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge (Sohn et al., 2009). The pressure measurements contain spectral peaks and harmonics with periods ranging from 22 to 53 min, none of which can be attributed to oceanographic or Earth tide processes. It is hypothesized that GSD cycles in this system may result from a nonlinear feedback between pore pressure and permeability in the hydrothermal system.

To test this hypothesis we have developed a poroelastic convection model representing the upper crustal section at TAG that includes a "switching" type pressure-permeability feedback in the stockwork zone of the hydrothermal system. In this zone, the permeability increases when the pressure reaches a critical high value, and decreases when it reaches a critical low value. This behavior simulates the opening and closing of cracks within the hydrothermal system, and is similar to mechanisms that have been proposed for dike propagation in magmatic systems (Buck et al., 2006).

Our modeling suggests that this mechanism can generate GSD that are similar to those observed at TAG. We are currently using these models to explore the sensitivity of inflation and deflation rates to system properties such as the geometry of the stockwork zone, the temperature of fluid in the upflow zone, the elastic properties of the lithosphere, and the relationship between pore pressure and permeability.