Atmospheric River Development and Effects on Southern California

Friday, 19 December 2014
Sarah May Harris and Leila V Carvalho, University of California Santa Barbara, Santa Barbara, CA, United States
Throughout most of southern California (SCA) annual precipitation totals occur from relatively few storms per season. Any changes to storm frequency or intensity may dramatically impact the region, as its landscapes are prone to various rainfall-induced hazards including landslides and floods. These hazards become more frequent following drought or fire events, conditions also reliant on precipitation and common in SCA. Rainfall forecasts are especially difficult to determine as regional precipitation is affected by numerous phenomena. On synoptic timescales, atmospheric rivers (ARs) are one such phenomenon known to impact SCA rainfall. ARs are channels of high water vapor content found within the lower atmosphere that transport moisture towards midlatitudes. In areas with varying topography, ARs often produce high-intensity precipitation due to orographic forcing. Although much insight has been gained in understanding AR climatology affecting North America’s western coast, the spatiotemporal characteristics and atmospheric forcings driving ARs to SCA need to be further addressed. The goal of this work is to understand the characteristics of ARs that impact SCA and to distinguish them from ARs that impact northern latitudes.

We investigate AR characteristics as well as atmospheric features prior to plume initiation for ARs impacting different landfall regions along North America’s western coast between 1998-2008. Dates of AR events are organized according to landfall region using total precipitable water (TPW) fields from the National Oceanic and Atmospheric Administration’s Climate Forecast System Reanalysis (CFSR). Additional CFSR fields are used to create anomaly composites of moist static energy, geopotential height, as well as upper-level zonal and low-level meridional winds for each landfall region on the day of and prior to AR occurrence. ARs that impact SCA display different TPW plume characteristics as well as wave train patterns throughout the AR lifecycle (prior to plume initiation–AR landfall) compared to ARs that landfall further north. This suggests that ARs impacting SCA differ in initiation mechanisms as well as structural qualities from other ARs. Information from these analyses will assist in creating and validating an automatic tool for identifying AR occurrences.