H33J-0969:
Iron as a Cofactor That Limits the Promotion of Cyanobacteria in Lakes Across a Tropic Gradient

Wednesday, 17 December 2014
Ryan James Sorichetti, Irena F Creed and Charles G Trick, University of Western Ontario, London, ON, Canada
Abstract:
The frequency and intensity of cyanobacterial blooms (cyanoblooms) is increasing globally. While cyanoblooms in eutrophic (nutrient-rich) freshwater lakes are expected to persist and worsen with climate change projections, many of the “new” cyanobloom reports pertain to oligotrophic (nutrient-poor) freshwater lakes with no prior history of cyanobloom occurrence. Under the pressures of a changing climate, there exists a critical research need to revisit existing conceptual models and identify cyanobloom regulating factors currently unaccounted for. Iron (Fe) is required in nearly all pathways of cyanobacterial macronutrient use, though its precise role in regulating cyanobacterial biomass across the lake trophic gradient is not fully understood. The hypotheses tested were: (1) cyanobacteria will predominate in lakes when bioavailable Fe concentration is low, and (2) cyanobacteria overcome this Fe limitation in all lakes using the siderophore-based Fe acquisition strategy to scavenge Fe providing a competitive advantage over other phytoplankton. These hypotheses were tested using natural lakes across an oligo-meso-eutrophic gradient across Canada. In all lakes sampled, the relative cyanobacterial biomass was highest at low predicted Fe bioavailability (< 1.0 × 10-19 mol L-1). Within this range of low bioavailable Fe, iron-binding organic ligands were measured. Concentrations of ligands with reactive hydroxamate moieties were positively correlated to cyanobacterial biomass in both the oligotrophic (r2 = 0.77, p < 0.001) and eutrophic (r2 = 0.81, p < 0.001) lakes suggesting a possible low-Fe mediated cellular origin, siderophores. Fe-binding ligands with catecholate-type binding sites were detected in all lakes, although lack of a relationship with cyanobacterial biomass and a significant relationship with dissolved organic carbon (DOC) in oligotrophic (r2 = 0.65, p < 0.001) and eutrophic (r2 = 0.65, p < 0.001) lakes may indicate an allochthonous source that is not used by cyanobacteria. These findings suggest that Fe serves as a possible cofactor that maintains cyanobacterial levels across a lake trophic gradient and that cyanobacteria invoke a similar Fe-scavenging system to overcome Fe limitation in lakes of all trophic status.