V33B-4854:
Digging into Augustine Volcano's Silicic Past
Wednesday, 17 December 2014
Patricia Amanda Nadeau, James D Webster and Beth A Goldoff, American Museum of Natural History, Earth and Planetary Sciences, New York, NY, United States
Abstract:
Activity at Augustine Volcano, Alaska, has been marked by intermediate composition domes, flows, and tephras during the Holocene. Erosive lahars associated with the 2006 eruption exposed voluminous rhyolite pumice fall beneath glacial tills. The rhyolite is both petrologically and mineralogically different from more recent eruptions, with abundant amphibole (both calcium-amphiboles and cummingtonite) and quartz, both rare in more recent products. Three distinct lithologies are present, with textural and chemical variations between the three. Fe-Ti oxide equilibria indicate temperatures of ~765°C and oxygen fugacities of NNO +1.5. Melt inclusions indicate that the stratigraphically lowest lithology began crystallizing isobarically at ~260 MPa with the contemporary mixed H2O-CO2 fluid phase becoming progressively H2O-rich. The other lithologies were likely crystallized under more H2O-dominated conditions, as indicated by the presence of cummingtonite. Apatites and melt inclusions have generally lower chlorine contents than more recently erupted material, which is typically high in chlorine. Xenocrysts of olivine and clinopyroxene in two of the three lithologies contain mafic (basalt to basaltic andesite) melt inclusions that indicate the likelihood of mixing and/or mingling of magmas as an eruption trigger. We interpret the three lithologies as representative of a smaller pumiceous rhyolite eruption, with subsequent extrusion of a rhyodacite banded lava dome or flow. This was followed by a large-scale rhyolitic pumice eruption that entrained portions of the banded flow as lithic inclusions. The unique qualities of this pre-glacial rhyolite and the potential hazards of a similarly large eruption in modern times indicate that further study is warranted.