T23B-4670:
Constraining the Lithospheric Structure of the Central Andes Using P- and S- wave Receiver Functions
T23B-4670:
Constraining the Lithospheric Structure of the Central Andes Using P- and S- wave Receiver Functions
Tuesday, 16 December 2014
Abstract:
The Central Andean Plateau (CAP) has elevations in excess of 3 km, and is part of the Andean Cordillera that resulted in part from shortening along the western edge of South America as it was compressed between the subducting Nazca plate and underthrusting Brazilian cratonic lithosphere. We calculated P- and S-wave receiver functions for the Central Andean Uplift and Geodynamics of High Topography (CAUGHT) temporary deployment of broadband seismometers in the Bolivian orocline (12°-20°S) region to investigate crustal thickness and lithospheric structure. Migration of the receiver functions is done using common conversion point (CCP) stacks through a 3D shear velocity model from ambient noise tomography (Ward et al., 2013). The P- and S-wave receiver functions provide similar estimates of the depth to Moho under the CAP. Crustal thicknesses include 60-65 km thick crust underneath the Bolivian Altiplano, crust that varies from ~70 km to ~50 km underneath the Eastern Cordillera and Interandean zone, and thins to 50 to 40 km crust in the Subandes and the edge of the foreland. The variable crustal thickness of the Eastern Cordillera and Interandean zone ranges from >70 km associated with the Los Frailes volcanic field at 19°-20°S to ~55 km beneath the 6 km peaks of the Cordillera Real at ~16°S.From our S-wave receiver functions, that have no multiples that can interfere with deeper structure, we also identify structures below the Moho. Along a SW-NE line that runs near La Paz where we have our highest station density, the S-wave CCP receiver-function stacks show a strong negative polarity arrival at a depth of ~120 km from the eastern edge of the Altiplano to the Subandean zone. We suggest this may be a good candidate for the base of the CAP lithosphere. In addition, above this depth the mantle is strongly layered, suggesting that there is not a simple high velocity mantle lithosphere associated with the continental lithosphere underthrusting the Andean orogen from the east.