P33A-4028:
Identification and Characterization of Well-Preserved Impact Ejecta Deposits Using THEMIS Global Infrared Mosaics

Wednesday, 17 December 2014
Jonathon Ryan Hill and Philip R Christensen, Arizona State University, Tempe, AZ, United States
Abstract:
The Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey spacecraft has been acquiring infrared observations of the Martian surface for nearly thirteen years. Daytime infrared images from the first twelve years of the mission have previously been used to generate a complete global mosaic, while nighttime infrared images have been used to generate a near-global mosaic between 60°N-60°S. A combined product has been generated by overlaying the daytime global mosaic with a colorized version of the nighttime global mosaic, resulting in a near-global map that can be used to more easily identify surface features with unique thermal characteristics.

Well-preserved ejecta deposits associated with fresh impact craters are readily identifiable in the combined map by their characteristic nighttime temperature pattern, which is controlled by variations in the thermal inertia of the ejecta material. The pattern consists of relatively high thermal inertia material in and around the crater, an inner ejecta ring composed of intermediate thermal inertia material and an outer ejecta ring composed of low thermal inertia material.

A near-global survey (60°N-60°S) of these well-preserved ejecta deposits has shown that the vast majority occur in a small region covering northern Terra Sirenum and eastern Daedalia Planum, with a smaller concentration present in Syria Planum. A comparison of THEMIS and Viking images has verified that the larger craters and ejecta deposits were present at the time of the Viking mission and are not the result of more recent impacts. The survey also identified similarly fresh impact craters across the planet that are lacking an outer ring of low thermal inertia ejecta material, possibly due to erosion of the original ejecta deposits. This suggests that local conditions in Terra Sirenum, Daedalia Planum and Syria Planum are favorable for the long-term preservation of the fine-grained component of fresh impact ejecta deposits.