DI13A-4267:
Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

Monday, 15 December 2014
Paul D Asimow and Natalia V Solomatova, California Institute of Technology, Pasadena, CA, United States
Abstract:
Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth’s deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A. (2011). Dolomite III: A new candidate lower mantle carbonate. Geophy. Res. Lett., 38(22). [2] Merlini, M., Crichton, W. A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012). Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc. Nat. Acad. Sci., 109(34), 13509-13514.