S53C-4534:
Very Low Frequency Earthquakes (VLFEs) in Cascadia and Their Interactions with Tremor

Friday, 19 December 2014
Abhijit Ghosh, University of California Riverside, Earth Sciences, Riverside, CA, United States
Abstract:
Very low frequency earthquakes (VLFEs) are discrete seismic events rich in low frequencies (20 – 50 sec) and depleted in high frequencies compared to similar size local events. They are associated with slow earthquakes and so far found in only a handful of subduction zones worldwide. I systematically search and find VLFEs in the Cascadia subduction zone. I use a grid-search moment tensor inversion method to scan for VLFEs in 3-D space and time, locate them and determine their source parameters. They are located downdip of the locked zone, where non-volcanic tremor occurs (Fig. 1). The best estimates of VLFE depths put them near the plate interface. Their focal mechanisms indicate double couple sources and are consistent with shallow dipping thrust movement. Their moment magnitude ranges between 3.3 and 3.5 suggesting that a significant part of seismic moment may be released by such VLFEs during slow earthquakes. Interestingly, most of the VLFEs are located where the slip is the largest in an ETS event. Generally, VLFEs correlates with tremor quite well in space and time. They slowly migrate alongstrike form south to north with tremor. In detail, VLFEs appear to be tracking tremor even during tremor migration of shorter time scales. I am currently expanding the VLFE catalog in space and time to better characterize their spatiotemporal distribution, moment release, and their role in slow earthquakes. VLFEs and their interaction with tremor is providing new insights to the physics of slow earthquakes, underlying processes governing them and fault properties in Cascadia.