B11I-01:
Getting the science right for the right reasons: the environmental sensing revolution that just happened.

Monday, 15 December 2014: 8:00 AM
John Steven Selker, Oregon State University, Biological and Ecological Engineering, Corvallis, OR, United States
Abstract:
Noting that cool phone in your pocket, and your car have more sensors and wireless capabilities than your new Campbell weather station, does it ever feel like there is a mismatch between the world of science and that of consumer products? How can we understand our place in the “sensing ecosystem,” and sort between the transformative opportunities of sensing technology and technological land mines that will expend your budget and be unreliable? Here I review the impact of three technological frameworks on biogeochemical observation: distributed fiber optic sensing; low-power radio and GSM communication; and 3-D printing. From the fiber optic sensing applications in air, soil, rivers, oceans and wells, we see that this truly does qualify as a revolutionary observational platform. Specifically, it densely spans the critical 0.1 m to 10,000 m spatial scales and 1 to 1,000,000 s temporal scales, providing opportunity to address long-standing fundamental open questions. This is placed in contrast to the unfulfilled promises touted by the self-organizing mesh network radio technology. We argue that this outcome reflects a lack of candor of technology insiders in the selling of this technology with respect to the potential given the 1/r^3 energy of radio communication combined with the challenges of environmental settings for wave propagation (e.g., intense rain, snow laden branches, and long periods of low solar radiation). This is contrasted with the excellent outcomes of GSM-based monitoring approaches that leveraged the massive infrastructure of cellular telephones. Finally, I will venture to explain why open-source 3-D printing technology will provide the next transformative opportunity for Biogeosicences by re-inventing point-sensing instrumentation.