Alignment of olivine crystals during diffusion creep in oceanic peridotite mylonites

Wednesday, 17 December 2014: 2:40 PM
Nikolaus J Deems1, Jessica M Warren1 and Monica Wolfson-Schwehr2, (1)Stanford University, Stanford, CA, United States, (2)University of New Hampshire, San Jose, CA, United States
At small grain sizes (<10 µm), olivine is expected to deform by diffusion creep at lithospheric conditions. Microstructural analysis by electron backscatter diffraction of 13 peridotite mylonites from St. Paul’s Rocks (SPR) indicates that olivine has a pronounced axial-[010] lattice preferred orientation (i.e. [010] clusters perpendicular to foliation, while [100] and [001] are dispersed in the foliation plane) and a mean grain size of ~7µm. Holtzman et al. (2003) has observed similar LPOs in partially molten samples experimentally deformed under simple shear at lithospheric conditions. The occurrence of a lattice preferred orientation (LPO) is typically interpreted as indicating deformation by dislocation creep. In addition, compositional maps of the samples show that amphibole (pargasite) is ubiquitous. As the presence of pargasite in peridotites is controlled in part by the activity of plagioclase and water at high temperatures (Lynkins and Jenkins, 1992), we infer this as evidence for the presence of pre- to syn-tectonic trapped melt.

In order to explain the observed LPO in SPR mylonites, we evaluate the hypothesis that alignment occurred during diffusion creep, such as observed in experiments by Sundberg and Cooper (2008) and Miyazaki et al., (2013). To explore this hypothesis, we conducted analyses of low angle (2-10°) rotation axis inverse pole figures (IPFs), which can often provide insight into the operative slip system(s). Analyses of low angle IPFs from SPR, however, showed no definitive correlation to any one particular slip system. On the other hand, high angle IPFs showed intense clustering of rotational axes at 75-90° about [010], indicating that [100] and [001] align nearly perpendicular to [010]. Based on the IPF analysis and evidence of pre- to syn-tectonic melt, we conclude that the presence of melt lubricated grain boundaries, which resulted in rigid rotation of grains and alignment of the [010] axes controlled by the orthorhombic crystal habit of olivine. That is, as [010] is shortest in terms of habit, this allows [010] to align perpendicular to the shear plane, while the [100] and [001] axes are dispersed in the plane parallel to shear. Thus, SPR mylonites represent a natural example of olivine LPO formation during diffusion creep.