B14C-07:
Genomics of Nitrogen Cycle in Freshwater Lakes with Focus on Methylotrophic Bacteria

Monday, 15 December 2014: 5:30 PM
Ludmila Chistoserdova, University of Washington Seattle Campus, Seattle, WA, United States
Abstract:
Data will be presented on communities of microbes active in methane oxidation in Lake Washington, Seattle. Metagenomic sequencing of sediment samples reveals dominant presence of Methylobacter, contrary to prior understanding based on cultivation of methanotrophs. Stable isotope probing of microcosms incubated with methane at varying concentrations of oxygen and nitrate uncover a dominant response by Methylobacter species and a correlation between the populations of Methylobacter and Methylotenera, both responding positively to nitrate. We also uncover a propensity of Methylobacter to act in microoxic conditions, in this case transferring carbon down a food chain represented by a variety of bacteria. Functional gene profiling detects upwards shifts in the abundances of nitrogen metabolism genes in response to nitrate, with Methylococcaceae and Methylophilaceae genes being most abundant. We test a hypothesis of cooperative behavior between Methylobacter, Methylotenera and other species using two alternative approaches: a top-down approach in which we incubate native lake sediments under different conditions and observe trajectories of community simplification, and a bottom-up approach in which we construct synthetic communities from pure cultures of bacteria and observe their behavior. We also cultivate Methylobacter as well as multiple species of Methylophilaceae and analyze their genomes. Among the Methylophilaceae, we uncover a remarkable flexibility in terms of both central carbon and nitrogen metabolic pathways. We hypothesize that this diversity may be driven by microniche conditions along the methane and oxygen countergradients, as well as by the availability of nitrogen sources. Our future plans include deciphering the mechanistic details of cooperative behavior in methane oxidation, using Lake Washington communities as a model.