V43B-4876:
Petrology and Geochronology of High-Grade Metamorphic Rocks from Cedros Island, Baja California, Mexico

Thursday, 18 December 2014
Derik Gonzales and Mary L Leech, San Francisco State University, San Francisco, CA, United States
Abstract:
High-grade metamorphic rocks exposed on Cedros Island, Baja California, Mexico, record the Mesozoic subduction history of western North America. Blocks of amphibolite, blueschist, and eclogite crop out in a serpentinite-matrix mélange on the southeast and southwestern parts of Cedros Island. Amphibolite blocks contain Amp + Ep + Ab + Chl ± Ms ± Grt ± Ttn ± Qz; blueschist blocks have the assemblage Na-Amp + Ms + Lw + Qz ± Ttn ± Grt ± Jd ± Chl; and eclogite blocks are comprised primarily of Omp + Grt with retrograde Na-Amp + Ms + Lw. Blueschists from Cedros have been dated using 40Ar/39Ar step-heating of white mica and sodic amphiboles that yield ages from 103 ± 4 Ma to 94.9 ± 1.1 Ma, respectively, that represent cooling during exhumation. Apatite fission-track dating gives ages from 32 ± 4 Ma to 22 ± 3 Ma that record exhumation through the upper crust. Related Mesozoic subduction zone rocks of the Franciscan Complex crop out in a serpentinite-matrix mélange along coastal northern California. The Franciscan rocks are older, yielding 40Ar/39Ar step-heating ages of hornblende from amphibolite ranging from 159 to 156 Ma and represent an older part of the subduction history of the oceanic Farallon plate along western North America. I will determine the prograde and peak metamorphic P-T conditions for these high-grade rocks using petrography, mineral chemistries, and isochemical phase diagram modeling with Perple_X to generate complete P-T paths. I will then supplement these data with Sm-Nd and Lu-Hf geochronology for these high-grade Cedros rocks to evaluate their subduction/exhumation history, and develop a tectonic model for these southernmost Franciscan-type rocks. Ultimately, I will compare my results to Franciscan rocks in northern California to better understand the Mesozoic subduction margin of western North America.