GC21C-0564:
Periodic Analysis Between Solar Variability and the Earth’s Temperature From Centuries to Ten Thousand Years

Tuesday, 16 December 2014
Xinhua Zhao and Xue Shang Feng, NSSC National Space Science Center, CAS, Beijing, China
Abstract:
The global warming is one of the hottest topics for both scientists and the public at present. Strong evidences have shown that the global warming is related to the man-made increasing greenhouse gas levels. Besides the artificial factors, natural forces also contribute to the Earth's climate change. Among them, solar activity is an important ingredient of the natural driving forces of the Earth's climate. In this study, two data sets are adopted to investigate the periodicities of both solar activity and the variation of the Earth temperature as well as their correlations based on the wavelet analysis and cross correlation method. The first one is a directly measured data set covering centuries, while the second one is the reconstructed data during the past 11,000 years. The obtained results demonstrate that solar activity and the Earth’s temperature have significant resonance cycles, and the Earth’s temperature has periodic variations similar to those of solar activity. For centuries, these common periodicities include the 22-year cycle and the 50-year cycle. While for 11,000 years, they are the 200-year, 500-year, 1000-year, and 2000-year cycles. Correlation analysis reveals that the correlations between solar variability and the Earth's temperature are statistically significant. The correlation coefficient (C.C.) between the 11-year running averaged Total Solar Irradiance (TSI) and the ocean temperature is 0.88 during the past 133 years of global warming. While for 11,000 years, the C.C. between the 500-year running averages of sunspot number (SSN) and the Earth temperature (r=0.51, p=1%) is stronger than that between the temperature and the atmospheric CO2 concentration (r=0.35, p=10%). All these support that solar activity should have non-ignorable effects on the Earth’s climate change, especially before the modern industrial time.