S31B-4401:
Lithospheric Deformation Along the Southern and Western Suture Zones of the Wyoming Province
Abstract:
The Wyoming Province is an Archean craton that played an early role in the construction and growth of the North American continent. This region, which encompasses the majority of modern day Wyoming and southern Montana, initially collided with other Archean blocks in the Paleoproterozoic (2.0-1.8 Ga), creating the Canadian Shield. From 1.8-1.68 Ga, the Yavapai Province crashed into the Wyoming Province, suturing the two together. The accretion of the Yavapai Province gave way to the Cheyenne Belt, a deformational zone that exists along the southern border of the Wyoming Province where earlier studies have found evidence for crustal imbrication and double a Moho. Current deformation within the Wyoming province is due to its interaction with the Yellowstone Hotspot, which is currently located in the northwest portion of the region. This study images the LAB along the western and southern borders of the Wyoming Province in order to understand how the region’s Archean lithosphere has responded to deformation over time. These results shed light on the inherent strength of Archean cratonic lithosphere in general.We employ two methods for this study: common conversion point (CCP) stacking of S to P receiver functions and teleseismic and ambient Rayleigh wave dispersion. The former is used to image the LAB structure while the latter is used to create a velocity gradient for the region. Results from both of the methods reveal a notably shallower LAB depth to the west of the boundary. The shallower LAB west of the Wyoming Province is interpreted to be a result of lithospheric thinning due to the region's interaction with the Yellowstone Hotspot and post-Laramide deformation and extension of the western United States. We interpret the deeper LAB east of the boundary to be evidence for the Wyoming Province's resistance to lithospheric deformation from the hotspot and tectonic processes. CCP images across the Cheyenne Belt also reveal a shallower LAB under the western perimeter of the belt. We believe that this is a result of the LAB jumping up to a mid-lithospheric discontinuity (MLD) as the less stable lower lithosphere was thinned or removed. This same MLD appears above the intact LAB in the eastern portion of the Cheyenne Belt. This suggests that the western end of the Cheyenne Belt has undergone more deformation over time than the eastern end.