Morphodynamic Response of Laboratory Stream Beds to Unsteady Flow Events of Varying Magnitude and Duration

Wednesday, 17 December 2014
Etta Haley Gunsolus and Andrew David Binns, University of Western Ontario, Civil and Environmental Engineering, London, ON, Canada
Natural processes and anthropogenic activities can cause short-term flow increases in rivers. These changes in flow, such as those caused by extreme rainfall events or seasonal variation in precipitation patterns, can result in substantial, and sometimes quite rapid, adjustments in sediment regime and alluvial stream morphology. Such morphological adjustments can pose short-term erosion hazards, increased risk of flooding, degradation to aquatic habitat, damage to in-stream engineering infrastructure, and re-mobilization of pollutants. Alterations in river hydraulics, sediment transport and stream morphology from specific unsteady events prove challenging to accurately predict and assess. This research quantifies the morphodynamic response of stream beds to unsteady flow events of varying magnitude and duration. For this purpose, a series of experimental runs is conducted in a 0.31 m-wide, 5.0 m-long laboratory sediment transport flume comprised of a well-sorted medium sand. All runs start from flat-bed initial conditions with a given longitudinal slope. The bed is allowed to develop under constant base-flow (antecedent) conditions until equilibrium conditions are reached. For each run a prescribed increase in flow rate for a pre-determined duration is applied to simulate the unsteady flow event. The magnitude of the increase in flow rate and the duration of the event are systematically varied from run to run. In each run measurements of bed morphology are conducted prior to the event (during antecedent flow conditions), at the conclusion of the event, and following a return base-flow (antecedent) conditions. Sediment transport rates are monitored throughout each run. The morphological response and the time-scale of the bed adjustments to unsteady events is quantified. The effect of the magnitude and duration of the flow increase on this increase is evaluated. This study contributes to the development of predictive tools for engineers and hydrologists to better understand the magnitude and time-scale of the morphodynamic response of streams to unsteady flow events, leading to the implementation of more resilient river restoration efforts, better protection of hydraulic structures, and development of comprehensive river management strategies.