A43J-01:
Reconciling Long-Term Trends in Air Quality with Bottom-up Emission Inventories for Los Angeles
Thursday, 18 December 2014: 1:40 PM
Brian C Mcdonald1, Si-Wan Kim2, Gregory J Frost3, Robert Harley4 and Michael Trainer3, (1)University of California Berkeley, Berkeley, CA, United States, (2)CIRES, University of Colorado, Boulder, CO, United States, (3)NOAA, Earth System Research Laboratory, Boulder, CO, United States, (4)Univ California, Berkeley, CA, United States
Abstract:
Significant long-term changes in air quality have been observed in the United States over several decades. However, reconciling ambient observations with bottom-up emission inventories has proved challenging. In this study, we perform WRF-Chem modeling in the Los Angeles basin for carbon monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (VOCs), and ozone (O3) over a long time period (1987-2010). To improve reconciliation of emission inventories with atmospheric observations, we incorporate new high-resolution emissions maps of a major to dominant source of urban air pollution, motor vehicles. A fuel-based approach is used to estimate motor vehicle emissions utilizing annual fuel sales reports, traffic count data that capture spatial and temporal patterns of vehicle activity, and pollutant emission factors measured from roadway studies performed over the last twenty years. We also update emissions from stationary sources using Continuous Emissions Monitoring Systems (CEMS) data when available, and use emission inventories developed by the South Coast Air Quality Management District (SCAQMD) and California Air Resources Board (ARB) for other important emission source categories. WRF-Chem modeling is performed in three years where field-intensive measurements were made: 1987 (SCAQS: Southern California Air Quality Study), 2002 (ITCT: Intercontinental Transport and Chemical Transformation Study), and 2010 (CALNEX). We assess the ability of the improved bottom-up emissions inventory to predict long-term changes in ambient levels of CO, NOx, and O3, which are known to have occurred over this time period. We also assess changing spatial and temporal patterns of primary (CO and NOx) and secondary (O3) pollutant concentrations across the Los Angeles basin, which has important implications on human health.