Investigating Atmospheric Rivers using GPS PW from Ocean Transits

Friday, 19 December 2014
Vanessa Almanza1, James H Foster2 and Steven Businger1, (1)University of Hawaii at Manoa, Honolulu, HI, United States, (2)University of Hawaii, Hawaii Institute of Geophysics and Planetology, Honolulu, HI, United States
Atmospheric Rivers (AR) can be described as a long narrow feature within a warm conveyor belt where anomalous precipitable water (PW) is transported from low to high latitudes. Close monitoring of ARs is heavily reliant on satellites, which are limited both in space and time, to capture the fluctuations PW particularly over the ocean. Ship-based Global Positioning System (GPS) receivers have been successful in obtaining millimeter PW accuracy within 100 km from the nearest ground-based reference receiver at a 30 second sampling rate. We extended this capability with a field experiment using ship-based GPS PW on board a cargo ship to traverse over the Eastern Pacific Ocean. In one 14-day cruise cycle, between the periods of February 3-16, 2014, the ship-based GPS captured PW spikes >50 mm during the early development of two ARs, which lead to moderate to heavy rainfall events for Hawaii and flood conditions along the West Coast of the United States. Comparisons between PW solutions processed using different GPS reference sites at distances 100-2000 km provided an internal validation for the ship-based GPS PW with errors typically less than 5 mm. Land-based observations provided an external validation and are in good agreement with ship-based GPS PW at distances <100 km from the coast, a zone heavily trafficked by cargo containers and a challenge area for satellite retrievals. From these preliminary results, commercial ship-based GPS receivers offer an extremely cost-effective approach for acquiring continuous meteorological observations over the oceans, which can provide important calibration/validation data for satellite retrieval algorithms. Ship-based systems could be particularly useful for augmenting our meteorological observing networks to improve weather prediction and nowcasting, which in turn provide critical support for hazard response and mitigation efforts in coastal regions.